Simulated Microgravity Combined with Polyglycolic Acid Scaffold Culture Conditions Improves the Function of Pancreatic Islets

نویسندگان

  • Yimin Song
  • Zheng Wei
  • Chun Song
  • Shanshan Xie
  • Jinfa Feng
  • Jiehou Fan
  • Zengling Zhang
  • Yubo Shi
چکیده

The in vitro culture of pancreatic islets reduces their immunogenicity and prolongs their availability for transplantation. Both simulated microgravity (sMG) and a polyglycolic acid scaffold (PGA) are believed to confer advantages to cell culture. Here, we evaluated the effects of sMG combined with a PGA on the viability, insulin-producing activity and morphological alterations of pancreatic islets. Under PGA-sMG conditions, the purity of the islets was ≥85%, and the islets had a higher survival rate and an increased ability to secrete insulin compared with islets cultured alone in the static, sMG, or PGA conditions. In addition, morphological analysis under scanning electron microscopy (SEM) revealed that the PGA-sMG treatment preserved the integral structure of the islets and facilitated islet adhesion to the scaffolds. These results suggest that PGA-sMG coculture has the potential to improve the viability and function of islets in vitro and provides a promising method for islet transplantation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of tissue-engineered human nasoseptal cartilage in simulated microgravity.

OBJECTIVE To evaluate the feasibility of in vitro fabrication of tissue-engineered cartilage from human nasoseptal chondrocytes for autologous reconstruction. DESIGN Hyaline cartilage was reconstituted from chondrocyte-polyglycolic acid scaffolding constructs in a 3-dimensional mammalian cell culture cascade. This included monolayer cellular amplification, cell seeding in the spinner flask, a...

متن کامل

Salvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling

Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...

متن کامل

Improvement of the functionality of pancreatic Langerhans islets via reduction of bacterial contamination and apoptosis using phenolic compounds

Objective(s): During type-1 diabetes treating by pancreatic islet transplantation, increasing oxidative stress and microbial contaminations are the main reasons of transplantation failure. In this study, we evaluated anti-apoptotic, antioxidant and antimicrobial potentials of phenolic compounds called ellagic acid (EA) and silybin on rat pancreatic islets. Materials and Methods: By doing MTT as...

متن کامل

Simulated microgravity culture system for a 3-D carcinoma tissue model.

An in vitro organotypic culture model is needed to understand the complexities of carcinoma tissue consisting of carcinoma cells, stromal cells, and extracellular matrices. We developed a new in vitro model of carcinoma tissue using a rotary cell culture system with four disposable vessels (RCCS-4D) that provides a simulated microgravity condition. Solid collagen gels containing human pancreati...

متن کامل

Progesterone and Cilostazol Protect mice pancreatic islets from oxidative stress induced by hydrogen peroxide

Abstract Reactive oxygen species and oxidative stress impair β-cell function and reduce insulin secretion. It has been shown that progesterone and cilostazol possess antioxidant properties. The present study was aimed to investigate in vitro pretreatment effect of progesterone and cilostazol on insulin secretion as well as their protective effects against hydrogen peroxide-induced oxidative str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013